Perform Calculation Between Rows With Datetime Index And Place Them Into New Columns
I have a dataframe, produced by this piece of code: import pandas as pd import datetime as dt datarange=pd.date_range('01-05-2018 00:00:00', periods=50, freq='4H') range_series_1=
Solution 1:
Use:
from datetime import time
np.random.seed(2019)
datarange=pd.date_range('01-05-2018 00:00:00', periods=50, freq="4H")
range_series_1=pd.Series(np.random.randint(-5,3,size=50).astype(float), index=datarange)
range_series_2=pd.Series(np.random.randint(5,9,size=50).astype(float), index=datarange)
frame=pd.DataFrame({'value1':range_series_1, 'value2':range_series_2})
frame.index.name='datetime'
#print (frame)
Idea is compare times for index and use DatetimeIndex.floor
for remove times (created default 00:00:00
) times for Series
and DataFrame
:
s = frame.loc[frame.index.time == time(4, 0), 'value1']
s.index = s.index.floor('d')
print (s)
datetime
2018-01-05 -3.0
2018-01-06 -5.0
2018-01-07 -5.0
2018-01-08 -5.0
2018-01-09 -1.0
2018-01-10 -4.0
2018-01-11 -2.0
2018-01-12 0.0
2018-01-13 1.0
Name: value1, dtype: float64
df1 = frame.loc[frame.index.time == time(12, 0), ['value1', 'value2']]
df1.index = df1.index.floor('d')
print (df1)
value1 value2
datetime
2018-01-05 0.0 6.0
2018-01-06 2.0 8.0
2018-01-07 -5.0 7.0
2018-01-08 2.0 7.0
2018-01-09 -1.0 5.0
2018-01-10 1.0 7.0
2018-01-11 2.0 7.0
2018-01-12 -2.0 6.0
Then subtract from right side by DataFrame.rsub
, add some prefix to new columns and join to original:
frame = frame.join(df1.rsub(s, axis=0).add_prefix('new_'))
print (frame.head(15))
value1 value2 new_value1 new_value2
datetime
2018-01-05 00:00:00 -5.0 6.0 -3.0 -9.0
2018-01-05 04:00:00 -3.0 5.0 NaN NaN
2018-01-05 08:00:00 2.0 7.0 NaN NaN
2018-01-05 12:00:00 0.0 6.0 NaN NaN
2018-01-05 16:00:00 -5.0 7.0 NaN NaN
2018-01-05 20:00:00 1.0 6.0 NaN NaN
2018-01-06 00:00:00 1.0 5.0 -7.0 -13.0
2018-01-06 04:00:00 -5.0 8.0 NaN NaN
2018-01-06 08:00:00 0.0 6.0 NaN NaN
2018-01-06 12:00:00 2.0 8.0 NaN NaN
2018-01-06 16:00:00 -1.0 8.0 NaN NaN
2018-01-06 20:00:00 -3.0 8.0 NaN NaN
2018-01-07 00:00:00 -5.0 5.0 0.0 -12.0
2018-01-07 04:00:00 -5.0 8.0 NaN NaN
2018-01-07 08:00:00 2.0 5.0 NaN NaN
Solution 2:
IIUC, you want to shift by time:
shifted = frame.shift(-8, freq='H')
frame['col1'] = frame['value1'] - shifted['value1']
frame['col2'] = frame['value1'] - shifted['value2']
Output (head):
value1 value2 col1 col2
datetime
2018-01-05 00:00:00 -3.0 8.0 -2.0 -8.0
2018-01-05 04:00:00 0.0 7.0 -2.0 -5.0
2018-01-05 08:00:00 -1.0 5.0 -1.0 -8.0
2018-01-05 12:00:00 2.0 5.0 3.0 -5.0
2018-01-05 16:00:00 0.0 7.0 4.0 -6.0
Post a Comment for "Perform Calculation Between Rows With Datetime Index And Place Them Into New Columns"