Separating A Dataframe By Date And Calculating Mathmetical Models Numpy Python
The data_list and the monthly_values array are in correlation with each other, so the data point '2019-09-01 00:00:00'= 15 , 2019-10-01 00:00:00'= 39.6... etc. The year_changes fun
Solution 1:
Try via groupby(),agg(),droplevel() and rename():
out=(data.groupby(data["Date"].dt.year)
.agg(['mean','median','max','min'])
.droplevel(0,1)
.rename(columns=lambda x:'Average' if x=='mean' else x.title()))
OR
via pivot_table(),droplevel() and rename():
out=(data.pivot_table('Averages',data["Date"].dt.year,aggfunc=['mean','median','max','min'])
.droplevel(1,1)
.rename(columns=lambda x:'Average' if x=='mean' else x.title()))
output of out:
Average Median Max Min
Date
2019 22.275000 24.65 39.6 0.2
2020 14.158333 14.05 26.8 2.3
2021 18.742857 5.00 93.9 -16.5
Post a Comment for "Separating A Dataframe By Date And Calculating Mathmetical Models Numpy Python"