What Is A Very General Way To Read-in .csv In Python And Pandas?
I have a .csv file with rows with multiple columns lengths. import pandas as pd df = pd.read_csv(infile, header=None) returns the ParserError: Error tokenizing data. C error: Ex
Solution 1:
OK, somewhat inspired by this related question: Pandas variable numbers of columns to binary matrix
So read in the csv but override the separator to a tab so it doesn't try to split the names:
In[7]:
import pandas as pd
import io
t="""Anne,Beth,Caroline,Ernie,Frank,Hannah
Beth,Caroline,David,Ernie
Caroline,Hannah
David,,Anne,Beth,Caroline,Ernie
Ernie,Anne,Beth,Frank,George
Frank,Anne,Caroline,Hannah
George,
Hannah,Anne,Beth,Caroline,David,Ernie,Frank,George"""
df = pd.read_csv(io.StringIO(t), sep='\t', header=None)
df
Out[7]:
0
0 Anne,Beth,Caroline,Ernie,Frank,Hannah
1 Beth,Caroline,David,Ernie
2 Caroline,Hannah
3 David,,Anne,Beth,Caroline,Ernie
4 Ernie,Anne,Beth,Frank,George
5 Frank,Anne,Caroline,Hannah
6 George,
7 Hannah,Anne,Beth,Caroline,David,Ernie,Frank,Ge...
We can now use str.split
with expand=True
to expand the names into their own columns:
In[8]:
df[0].str.split(',', expand=True)
Out[8]:
0 1 2 3 4 5 6 7
0 Anne Beth Caroline Ernie Frank Hannah None None
1 Beth Caroline David Ernie None None None None
2 Caroline Hannah None None None None None None
3 David Anne Beth Caroline Ernie None None
4 Ernie Anne Beth Frank George None None None
5 Frank Anne Caroline Hannah None None None None
6 George None None None None None None
7 Hannah Anne Beth Caroline David Ernie Frank George
So just to be clear modify your read_csv
line to this:
df = pd.read_csv(infile, header=None, sep='\t')
and then do the str.split
as above
Solution 2:
One can do some manipulation with the csv before using pandas.
# load data into list
with open('new_data.txt', 'r') as fil:
data = fil.readlines()
# remove line breaks from string entries
data = [ x.replace('\r\n', '') for x in data]
data = [ x.replace('\n', '') for x in data]
# calculate the number of columns
total_cols = max([x.count(',') for x in data])
# add ',' to end of list depending on how many are needed
new_data = [x + ','*(total_cols-x.count(',')) for x in data]
# save data
with open('save_data.txt', 'w') as outp:
outp.write('\n'.join(new_data))
# read it in as you did.
pd.read_csv('save_data.txt', header=None)
This is some rough python, but should work. I'll clean this up when I have time.
Or use the other answer, it's neat as it is.
Post a Comment for "What Is A Very General Way To Read-in .csv In Python And Pandas?"