Saving With H5py Arrays Of Different Sizes
I am trying to store about 3000 numpy arrays using HDF5 data format. Arrays vary in length from 5306 to 121999 np.float64 I am getting Object dtype dtype('O') has no native HDF5 e
Solution 1:
Looks like you tried something like:
In [364]: f=h5py.File('test.hdf5','w')
In [365]: grp=f.create_group('alist')
In [366]: grp.create_dataset('alist',data=[a,b,c])
...
TypeError: Object dtype dtype('O') has no native HDF5 equivalent
But if instead you save the arrays as separate datasets it works:
In [367]: adict=dict(a=a,b=b,c=c)
In [368]: for k,v in adict.items():
grp.create_dataset(k,data=v)
.....:
In [369]: grp
Out[369]: <HDF5 group "/alist" (3 members)>
In [370]: grp['a'][:]
Out[370]: array([ 0.1, 0.2, 0.3])
and to access all the datasets in the group:
In [389]: [i[:] for i in grp.values()]
Out[389]:
[array([ 0.1, 0.2, 0.3]),
array([ 0.1, 0.2, 0.3, 0.4, 0.5]),
array([ 0.1, 0.2])]
Solution 2:
Clean method for variable length internal arrays: http://docs.h5py.org/en/latest/special.html?highlight=dtype#arbitrary-vlen-data
hdf5_file = h5py.File('yourdataset.hdf5', mode='w')
dt = h5py.special_dtype(vlen=np.dtype('float64'))
hdf5_file.create_dataset('dataset', (3,), dtype=dt)
hdf5_file['dataset'][...] = arrs
print (hdf5_file['dataset'][...])
>>>array([array([0.1,0.2,0.3],dtype=np.float64),
>>>array([0.1,0.2,0.3,0.4,0.5],dtype=np.float64,
>>>array([0.1,0.2],dtype=np.float64], dtype=object)
Only works for 1D arrays, https://github.com/h5py/h5py/issues/876
Post a Comment for "Saving With H5py Arrays Of Different Sizes"