Hotelling's T^2 Scores In Python
I applied pca on a data set using matplotlib in python. However, matplotlib does not provide a t-squared scores like Matlab. Is there a way to compute Hotelling's T^2 score like Ma
Solution 1:
matplotlib's PCA
class doesn't include the Hotelling T calculation, but it can be done with just a couple lines of code. The following code includes a function to compute the T values for each point. The __main__
script applies PCA to the same example as used in Matlab's pca documentation, so you can verify that the function generates the same values as Matlab.
from __future__ import print_function, division
import numpy as np
from matplotlib.mlab import PCA
defhotelling_tsquared(pc):
"""`pc` should be the object returned by matplotlib.mlab.PCA()."""
x = pc.a.T
cov = pc.Wt.T.dot(np.diag(pc.s)).dot(pc.Wt) / (x.shape[1] - 1)
w = np.linalg.solve(cov, x)
t2 = (x * w).sum(axis=0)
return t2
if __name__ == "__main__":
hald_text = """Y X1 X2 X3 X4
78.5 7 26 6 60
74.3 1 29 15 52
104.3 11 56 8 20
87.6 11 31 8 47
95.9 7 52 6 33
109.2 11 55 9 22
102.7 3 71 17 6
72.5 1 31 22 44
93.1 2 54 18 22
115.9 21 47 4 26
83.8 1 40 23 34
113.3 11 66 9 12
109.4 10 68 8 12
"""
hald = np.loadtxt(hald_text.splitlines(), skiprows=1)
ingredients = hald[:, 1:]
pc = PCA(ingredients, standardize=False)
coeff = pc.Wt
np.set_printoptions(precision=4)
# For coeff and latent, compare to# http://www.mathworks.com/help/stats/pca.html#btjpztu-1print("coeff:")
print(coeff)
print()
latent = pc.s / (ingredients.shape[0] - 1)
print("latent:" + (" %9.4f"*len(latent)) % tuple(latent))
print()
# For tsquared, compare to# http://www.mathworks.com/help/stats/pca.html#bti6r0c-1
tsquared = hotelling_tsquared(pc)
print("tsquared:")
print(tsquared)
Output:
coeff:
[[ 0.0678 0.6785 -0.029 -0.7309]
[ 0.646 0.02 -0.7553 0.1085]
[-0.5673 0.544 -0.4036 0.4684]
[ 0.5062 0.4933 0.5156 0.4844]]
latent: 517.796967.496412.40540.2372
tsquared:
[ 5.68033.07586.00022.61983.36810.56683.48183.97942.60867.48184.1832.23272.7216]
Solution 2:
Even though this is an old question, I am posting the code as it may help someone. Here is the code, as a bonus this does multiple hotelling tests at once
import numpy as np
from scipy.stats import f as f_distrib
def hotelling_t2(X, Y):
# X and Y are 3D arrays# dim 0: number of features# dim 1: number of subjects# dim 2: number of mesh nodes or voxels (numer of tests)
nx = X.shape[1]
ny = Y.shape[1]
p = X.shape[0]
Xbar = X.mean(1)
Ybar = Y.mean(1)
Xbar = Xbar.reshape(Xbar.shape[0], 1, Xbar.shape[1])
Ybar = Ybar.reshape(Ybar.shape[0], 1, Ybar.shape[1])
X_Xbar = X - Xbar
Y_Ybar = Y - Ybar
Wx = np.einsum('ijk,ljk->ilk', X_Xbar, X_Xbar)
Wy = np.einsum('ijk,ljk->ilk', Y_Ybar, Y_Ybar)
W = (Wx + Wy) / float(nx + ny - 2)
Xbar_minus_Ybar = Xbar - Ybar
x = np.linalg.solve(W.transpose(2, 0, 1),
Xbar_minus_Ybar.transpose(2, 0, 1))
x = x.transpose(1, 2, 0)
t2 = np.sum(Xbar_minus_Ybar * x, 0)
t2 = t2 * float(nx * ny) / float(nx + ny)
stat = (t2 * float(nx + ny - 1 - p) / (float(nx + ny - 2) * p))
pval = 1 - np.squeeze(f_distrib.cdf(stat, p, nx + ny - 1 - p))
return pval, t2
Post a Comment for "Hotelling's T^2 Scores In Python"