Xgboost With Gridsearchcv, Scaling, Pca, And Early-stopping In Sklearn Pipeline
I want to combine a XGBoost model with input scaling and feature space reduction by PCA. In addition, the hyperparameters of the model as well as the number of components used in t
Solution 1:
The problem is that fit
method requires an evaluation set created externally, but we cannot create one before the transformation by the pipeline.
This is a bit hacky, but the idea is to create a thin wrapper to the xgboost regressor/classifier that prepare for the evaluation set inside.
from sklearn.base import BaseEstimator
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor, XGBClassifier
classXGBoostWithEarlyStop(BaseEstimator):
def__init__(self, early_stopping_rounds=5, test_size=0.1,
eval_metric='mae', **estimator_params):
self.early_stopping_rounds = early_stopping_rounds
self.test_size = test_size
self.eval_metric=eval_metric='mae'if self.estimator isnotNone:
self.set_params(**estimator_params)
defset_params(self, **params):
return self.estimator.set_params(**params)
defget_params(self, **params):
return self.estimator.get_params()
deffit(self, X, y):
x_train, x_val, y_train, y_val = train_test_split(X, y, test_size=self.test_size)
self.estimator.fit(x_train, y_train,
early_stopping_rounds=self.early_stopping_rounds,
eval_metric=self.eval_metric, eval_set=[(x_val, y_val)])
return self
defpredict(self, X):
return self.estimator.predict(X)
classXGBoostRegressorWithEarlyStop(XGBoostWithEarlyStop):
def__init__(self, *args, **kwargs):
self.estimator = XGBRegressor()
super(XGBoostRegressorWithEarlyStop, self).__init__(*args, **kwargs)
classXGBoostClassifierWithEarlyStop(XGBoostWithEarlyStop):
def__init__(self, *args, **kwargs):
self.estimator = XGBClassifier()
super(XGBoostClassifierWithEarlyStop, self).__init__(*args, **kwargs)
Below is a test.
from sklearn.datasets import load_diabetes
from sklearn.pipeline import Pipeline
from sklearn.decomposition import PCA
from sklearn.model_selection import GridSearchCV
x, y = load_diabetes(return_X_y=True)
print(x.shape, y.shape)
# (442, 10) (442,)
pipe = Pipeline([
('pca', PCA(5)),
('xgb', XGBoostRegressorWithEarlyStop())
])
param_grid = {
'pca__n_components': [3, 5, 7],
'xgb__n_estimators': [10, 20, 30, 50]
}
grid = GridSearchCV(pipe, param_grid, scoring='neg_mean_absolute_error')
grid.fit(x, y)
print(grid.best_params_)
If requesting feature requests to the developers, the easiest extension to make is to allow XGBRegressor
to create evaluation set internally when not provided. This way, no extension to the scikit-learn is necessary (I guess).
Post a Comment for "Xgboost With Gridsearchcv, Scaling, Pca, And Early-stopping In Sklearn Pipeline"