Skip to content Skip to sidebar Skip to footer

Split List Elements Into Sub-elements In Pandas Dataframe

I have a dataframe as:- Filtered_data ['defence possessed russia china','factors driving china modernise'] ['force bolster pentagon','strike capabilities pentagon congress detaili

Solution 1:

Use list comprehension with split and flatenning:

df['Filtered_data'] = df['Filtered_data'].apply(lambda x: [z for y in x for z in y.split()])
print (df)
                                       Filtered_data
0  [defence, possessed, russia, china, factors, d...
1  [force, bolster, pentagon, strike, capabilitie...
2  [missiles, warheads, deterrent, face, continue...

EDIT:

For unique values is standard way use sets:

df['Filtered_data'] = df['Filtered_data'].apply(lambda x: list(set([z for y in x for z in y.split()])))
print (df)
                                       Filtered_data
0  [russia, factors, defence, driving, china, mod...
1  [capabilities, detailing, china, force, pentag...
2  [deterrent, advances, face, warheads, missiles...

But if ordering of values is important use pandas.unique:

df['Filtered_data'] = df['Filtered_data'].apply(lambda x: pd.unique([z for y in x for z in y.split()]).tolist())
print (df)
                                       Filtered_data
0  [defence, possessed, russia, china, factors, d...
1  [force, bolster, pentagon, strike, capabilitie...
2  [missiles, warheads, deterrent, face, continue...

Solution 2:

You can use itertools.chain + toolz.unique. The benefit of toolz.unique versus set is it preserves ordering.

from itertools import chain
from toolz import unique

df = pd.DataFrame({'strings': [['defence possessed russia china','factors driving china modernise'],
                               ['force bolster pentagon','strike capabilities pentagon congress detailing china'],
                               ['missiles warheads', 'deterrent face continued advances']]})

df['words'] = df['strings'].apply(lambda x: list(unique(chain.from_iterable(i.split() for i in x))))

print(df.iloc[0]['words'])

['defence', 'possessed', 'russia', 'china', 'factors', 'driving', 'modernise']

Post a Comment for "Split List Elements Into Sub-elements In Pandas Dataframe"