Dynamically Select Dataframe Columns For Groupby In Python
I have a pandas dataframe named Incoming_Tags I can do groupby on the dataframe by mentioning the column names as input to groupby: Example: Incoming_Tags.groupby([ 'Domain','Tag_
Solution 1:
If want aggregate all numeric columns, non numeric are excluded by default:
defgroup_by(df,myList= [],*args):
return df.groupby(myList).mean()
Or with c
list of columns for specify columns for aggregating:
defgroup_by(df,myList= [],*args):
c = ['char_cnt','line_cnt','digit_cnt','sp_chr_cnt', 'word_cnt']
return df.groupby(myList)[c].mean()
Post a Comment for "Dynamically Select Dataframe Columns For Groupby In Python"