Subclassing Sklearn Linearsvc For Use As Estimator With Sklearn Gridsearchcv
I am trying to create a subclass from sklearn.svm.LinearSVC for use as an estimator for sklearn.model_selection.GridSearchCV. The child class has an extra function which in this ex
Solution 1:
You've got couple of problems:
- Methods defined do not have a return statement
- The dataset you've chosen doesn't converge with
LinearSVC
As soon as you correct for those you're fine to go:
from sklearn.datasets import make_classification
from sklearn.svm import LinearSVC
from sklearn.model_selection import GridSearchCV
RANDOM_STATE = 123classLinearSVCSub(LinearSVC):
def__init__(self, penalty='l2', loss='squared_hinge', additional_parameter1=1, additional_parameter2=100,
dual=True, tol=0.0001, C=1.0, multi_class='ovr', fit_intercept=True, intercept_scaling=1,
class_weight=None, verbose=0, random_state=None, max_iter=100000):
super(LinearSVCSub, self).__init__(penalty=penalty, loss=loss, dual=dual, tol=tol,
C=C, multi_class=multi_class, fit_intercept=fit_intercept,
intercept_scaling=intercept_scaling, class_weight=class_weight,
verbose=verbose, random_state=random_state, max_iter=max_iter)
self.additional_parameter1 = additional_parameter1
self.additional_parameter2 = additional_parameter2
deffit(self, X, y, sample_weight=None):
X = self.transform_this(X)
super(LinearSVCSub, self).fit(X, y, sample_weight)
return self
defpredict(self, X):
X = self.transform_this(X)
returnsuper(LinearSVCSub, self).predict(X)
defscore(self, X, y, sample_weight=None):
X = self.transform_this(X)
returnsuper(LinearSVCSub, self).score(X, y, sample_weight)
defdecision_function(self, X):
X = self.transform_this(X)
returnsuper(LinearSVCSub, self).decision_function(X)
deftransform_this(self, X):
return X
X, y = make_classification()
# Parameter tuning with custom LinearSVC
param_grid = {'C': [0.00001, 0.0001, 0.0005],
'dual': (True, False), 'random_state': [RANDOM_STATE],
'additional_parameter1': [0.90, 0.80, 0.60, 0.30],
'additional_parameter2': [20, 30]
}
gs_model = GridSearchCV(estimator=LinearSVCSub(), verbose=1, param_grid=param_grid,
scoring='roc_auc', n_jobs=1)
gs_model.fit(X, y)
Fitting 5 folds for each of 48 candidates, totalling 240 fits
[Parallel(n_jobs=1)]: Using backend SequentialBackend with1 concurrent workers.
[Parallel(n_jobs=1)]: Done 240 out of 240 | elapsed: 0.9s finished
GridSearchCV(estimator=LinearSVCSub(), n_jobs=1,
param_grid={'C': [1e-05, 0.0001, 0.0005],
'additional_parameter1': [0.9, 0.8, 0.6, 0.3],
'additional_parameter2': [20, 30],
'dual': (True, False), 'random_state': [123]},
scoring='roc_auc', verbose=1)
gs_model.predict(X)
array([0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1,
1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1,
1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1,
0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0,
0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1])
Post a Comment for "Subclassing Sklearn Linearsvc For Use As Estimator With Sklearn Gridsearchcv"