Tokenise Text And Create More Rows For Each Row In Dataframe
I want to do this with python and pandas. Let's suppose that I have the following: file_id text 1 I am the first document. I am a nice document. 2 I am the second
Solution 1:
Use:
s = (df.pop('text')
.str.strip('.')
.str.split('\.\s+', expand=True)
.stack()
.rename('text')
.reset_index(level=1, drop=True))
df = df.join(s).reset_index(drop=True)
print (df)
file_id text
01 I am the first document
11 I am a nice document
22 I am the second document
32 I am an even nicer document
Explanation:
First use DataFrame.pop
for extract column, remove last .
by Series.str.rstrip
and split by with Series.str.split
with escape .
because special regex character, reshape by DataFrame.stack
for Series, DataFrame.reset_index
and rename
for Series for DataFrame.join
to original.
Solution 2:
df = pd.DataFrame( { 'field_id': [1,2],
'text': ["I am the first document. I am a nice document.",
"I am the second document. I am an even nicer document."]})
df['sents'] = df.text.apply(lambda txt: [x for x in txt.split(".") if len(x) > 1])
df = df.set_index(['field_id']).apply(lambda x:
pd.Series(x['sents']),axis=1).stack().reset_index(level=1, drop=True)
df = df.reset_index()
df.columns = ['field_id','text']
Post a Comment for "Tokenise Text And Create More Rows For Each Row In Dataframe"