Vectorization And Matrix Multiplication By Scalars
Solution 1:
A pure numpy
calculation of t_
is (creates an array instead of a list):
In [254]: t = 5*np.arange(1,n+1)*np.pi/n
In [255]: t
Out[255]:
array([ 1.57079633, 3.14159265, 4.71238898, 6.28318531, 7.85398163,
9.42477796, 10.99557429, 12.56637061, 14.13716694, 15.70796327])
In [256]: a_11,a_12, a_21, a_22=0,1,-omega_0^2,-c
In [257]: a_11
Out[257]: 0
In [258]: A = np.array([[a_11,a_12], [a_21, a_22]])
In [259]: A
Out[259]:
array([[ 0, 1],
[-3, -1]])
In [260]: t.shape
Out[260]: (10,)
In [261]: A.shape
Out[261]: (2, 2)
In [262]: A_ = np.array([A for k in range (1,n+1,1)])
In [263]: A_.shape
Out[263]: (10, 2, 2)
A_
is np.ndarray
. I made A
a np.ndarray
as well; yours is np.matrix
, but your A_
will still be np.ndarray
. np.matrix
can only be 2d, where as A_
is 3d.
So t * A
will be array elementwise multiplication, hence the broadcasting error, (10,) (10,2,2)
.
To do that elementwise multiplication right you need something like
In [264]: result= t[:,None,None]*A[None,:,:]
In [265]: result.shape
Out[265]: (10, 2, 2)
But if you want matrix multiplication of the (10,) with (10,2,2), then einsum
does it easily:
In [266]: result1 = np.einsum('i,ijk', t, A_)
In [267]: result1
Out[267]:
array([[ 0. , 86.39379797],
[-259.18139392, -86.39379797]])
np.dot
can't do it because its rule is 'last with 2nd to last'. tensordot
can, but I'm more comfortable with einsum
.
But that einsum
expression makes it obvious (to me) that I can get the same thing from the elementwise *, by summing on the 1st axis:
In [268]: (t[:,None,None]*A[None,:,:]).sum(axis=0)
Out[268]:
array([[ 0. , 86.39379797],
[-259.18139392, -86.39379797]])
Or (t[:,None,None]*A[None,:,:]).cumsum(axis=0)
to get a 2x2 for each time.
Post a Comment for "Vectorization And Matrix Multiplication By Scalars"