Transposing A Column In A Pandas Dataframe While Keeping Other Column Intact With Duplicates
My data frame is as follows selection_id last_traded_price 430494 1.46 430494 1.48 430494 1.56 430494 1.57 430495 2.45 430495 2.67 430495
Solution 1:
Option 1groupby
+ apply
v = df.groupby('selection_id').last_traded_price.apply(list)
pd.DataFrame(v.tolist(), index=v.index)
0123
selection_id
4304941.461.481.561.574304952.452.672.722.87
Option 2
You can do this with pivot
, as long as you have another column of counts to pass for the pivoting (it needs to be pivoted along something, that's why).
df['Count'] = df.groupby('selection_id').cumcount()
df.pivot('selection_id', 'Count', 'last_traded_price')
Count 0 1 2 3
selection_id
430494 1.46 1.48 1.56 1.57
430495 2.45 2.67 2.72 2.87
Solution 2:
You can use cumcount
for Counter for new columns names created by set_index
+ unstack
or pandas.pivot
:
g = df.groupby('selection_id').cumcount()
df = df.set_index(['selection_id',g])['last_traded_price'].unstack()
print (df)
0 1 2 3
selection_id
430494 1.46 1.48 1.56 1.57
430495 2.45 2.67 2.72 2.87
Similar solution with pivot
:
df = pd.pivot(index=df['selection_id'],
columns=df.groupby('selection_id').cumcount(),
values=df['last_traded_price'])
print (df)
0 1 2 3
selection_id
430494 1.46 1.48 1.56 1.57
430495 2.45 2.67 2.72 2.87
Post a Comment for "Transposing A Column In A Pandas Dataframe While Keeping Other Column Intact With Duplicates"