How To Slice A Pandas Time Series Using A Logical Expression Involving Dates
I want to understand slicing with timeseries in Pandas and I am looking at the possibility of combining in a logical statement (combining and , or, not operands) conditions involvi
Solution 1:
Convert to datetime first using pd.to_datetime
. You can then use datestrings in your loc
statement:
df['Date'] = pd.to_datetime(df['Date'])
# This says: find where date is not between your range and not equal to 01-12
df.loc[(~df['Date'].between('2018-01-04','2018-01-08')) & (df['Date'] != '2018-01-12')]
Date Price
0 2018-01-02 30.240000
1 2018-01-03 30.629999
5 2018-01-09 31.309999
6 2018-01-10 31.400000
7 2018-01-11 31.580000
9 2018-01-16 31.200001
Solution 2:
Create DatetimeIndex
of removed values first with date_range
and union
, then select only difference
with original index:
idx = pd.date_range('2018-01-04','2018-01-08').union(['2018-01-12'])
df = HAO_10.loc[HAO_10.index.difference(idx)]
#another similar solutions#df = HAO_10.drop(idx, errors='ignore')#df = HAO_10[~HAO_10.index.isin(idx)]
If want working with date
s only and index
contains also time
s floor
is your friend:
df=HAO_10.loc[HAO_10.index.floor('d').difference(idx)]#another similar solutions#df = HAO_10[~HAO_10.index.floor('d').isin(idx)]print(df)Price2018-01-02 30.2400002018-01-03 30.6299992018-01-09 31.3099992018-01-10 31.4000002018-01-11 31.5800002018-01-16 31.200001
Your solution should be simlify:
df = HAO_10[((HAO_10.index < '2018-01-04') | ((HAO_10.index > '2018-01-08') &
(HAO_10.index != '2018-01-12')))]
Post a Comment for "How To Slice A Pandas Time Series Using A Logical Expression Involving Dates"