Mapping Values From One Dataframe To Another
I am trying to figure out some fast and clean way to map values from one DataFrame A to another. Let say I have DataFrame like this one: C1 C2 C3 C4 C5 1 a b c a 2
Solution 1:
Another alternative is map. Although it requires looping over columns, if I didn't mess up the tests, it is still faster than replace:
A = pd.DataFrame(np.random.choice(list("abcdef"), (1000, 1000)))
B = pd.DataFrame({'Code': ['a', 'b', 'c', 'd', 'e'],
'Value': ["'House'", "'Bike'", "'Lamp'", "'Window'", "'Car'"]})
B = B.set_index("Code")["Value"]
%timeit A.replace(B)
1 loop, best of 3: 970 ms per loop
C = pd.DataFrame()
%%timeit
forcolin A:
C[col] = A[col].map(B).fillna(A[col])
1loop, best of 3: 586 ms per loop
Solution 2:
You could use replace
:
A.replace(B.set_index('Code')['Value'])
import pandas as pd
A = pd.DataFrame(
{'C1': ['a', 'd', 'a', 'b'],
'C2': ['b', 'a', 'c', 'e'],
'C3': ['c', 'e', '', 'e'],
'C4': ['a', 'b', '', ''],
'C5': ['', 'a', '', '']})
B = pd.DataFrame({'Code': ['a', 'b', 'c', 'd', 'e'],
'Value': ["'House'", "'Bike'", "'Lamp'", "'Window'", "'Car'"]})
print(A.replace(B.set_index('Code')['Value']))
yields
C1 C2 C3 C4 C5
0 'House''Bike''Lamp''House'
1 'Window''House''Car''Bike''House'
2 'House''Lamp'
3 'Bike''Car''Car'
Post a Comment for "Mapping Values From One Dataframe To Another"