Skip to content Skip to sidebar Skip to footer

Can't Pickle Static Method - Multiprocessing - Python

I'm applying some parallelization to my code, in which I use classes. I knew that is not possible to pick a class method without any other approach different of what Python provide

Solution 1:

You could define a plain function at the module level and a staticmethod as well. This preserves the calling syntax, introspection and inheritability features of a staticmethod, while avoiding the pickling problem:

def aux():
    return "VoG - Sucess" 

classVariabilityOfGradients(object):
    aux = staticmethod(aux)

For example,

import copy_reg
import types
from itertools import product
import multiprocessing as mp

def_pickle_method(method):
    """
    Author: Steven Bethard (author of argparse)
    http://bytes.com/topic/python/answers/552476-why-cant-you-pickle-instancemethods
    """
    func_name = method.im_func.__name__
    obj = method.im_self
    cls = method.im_classcls_name = ''if func_name.startswith('__') andnot func_name.endswith('__'):
        cls_name = cls.__name__.lstrip('_')
    if cls_name:
        func_name = '_' + cls_name + func_name
    return _unpickle_method, (func_name, obj, cls)


def_unpickle_method(func_name, obj, cls):
    """
    Author: Steven Bethard
    http://bytes.com/topic/python/answers/552476-why-cant-you-pickle-instancemethods
    """for cls in cls.mro():
        try:
            func = cls.__dict__[func_name]
        except KeyError:
            passelse:
            breakreturn func.__get__(obj, cls)

copy_reg.pickle(types.MethodType, _pickle_method, _unpickle_method)

classImageData(object):

    def__init__(self, width=60, height=60):
        self.width = width
        self.height = height
        self.data = []
        for i inrange(width):
            self.data.append([0] * height)

    defshepard_interpolation(self, seeds=20):
        print"ImD - Success"defaux():
    return"VoG - Sucess"classVariabilityOfGradients(object):
    aux = staticmethod(aux)

    @staticmethoddefcalculate_orientation_uncertainty():
        pool = mp.Pool()
        results = []
        for x, y in product(range(1, 5), range(1, 5)):
            # result = pool.apply_async(aux) # this works too
            result = pool.apply_async(VariabilityOfGradients.aux, callback=results.append)
        pool.close()
        pool.join()
        print(results)


if __name__ == '__main__':  
    results = []
    pool = mp.Pool()
    for _ inrange(3):
        result = pool.apply_async(ImageData.shepard_interpolation, args=[ImageData()])
        results.append(result.get())
    pool.close()
    pool.join()

    VariabilityOfGradients.calculate_orientation_uncertainty()   

yields

ImD - Success
ImD - Success
ImD - Success
['VoG - Sucess', 'VoG - Sucess', 'VoG - Sucess', 'VoG - Sucess', 'VoG - Sucess', 'VoG - Sucess', 'VoG - Sucess', 'VoG - Sucess', 'VoG - Sucess', 'VoG - Sucess', 'VoG - Sucess', 'VoG - Sucess', 'VoG - Sucess', 'VoG - Sucess', 'VoG - Sucess', 'VoG - Sucess']

By the way, result.get() blocks the calling process until the function called by pool.apply_async (e.g. ImageData.shepard_interpolation) is completed. So

for _ in range(3):
    result = pool.apply_async(ImageData.shepard_interpolation, args=[ImageData()])
    results.append(result.get())

is really calling ImageData.shepard_interpolation sequentially, defeating the purpose of the pool.

Instead you could use

for _ in range(3):
    pool.apply_async(ImageData.shepard_interpolation, args=[ImageData()],
                     callback=results.append)

The callback function (e.g. results.append) is called in a thread of the calling process when the function is completed. It is sent one argument -- the return value of the function. Thus nothing blocks the three pool.apply_async calls from being made quickly, and the work done by the three calls to ImageData.shepard_interpolation will be performed concurrently.

Alternatively, it might be simpler to just use pool.map here.

results = pool.map(ImageData.shepard_interpolation, [ImageData()]*3)

Solution 2:

If you use a fork of multiprocessing called pathos.multiprocesssing, you can directly use classes and class methods in multiprocessing's map functions. This is because dill is used instead of pickle or cPickle, and dill can serialize almost anything in python.

pathos.multiprocessing also provides an asynchronous map function… and it can map functions with multiple arguments (e.g. map(math.pow, [1,2,3], [4,5,6]))

See: What can multiprocessing and dill do together?

and: http://matthewrocklin.com/blog/work/2013/12/05/Parallelism-and-Serialization/

>>>from pathos.multiprocessing import ProcessingPool as Pool>>>>>>p = Pool(4)>>>>>>defadd(x,y):...return x+y...>>>x = [0,1,2,3]>>>y = [4,5,6,7]>>>>>>p.map(add, x, y)
[4, 6, 8, 10]
>>>>>>classTest(object):...defplus(self, x, y): ...return x+y...>>>t = Test()>>>>>>p.map(Test.plus, [t]*4, x, y)
[4, 6, 8, 10]
>>>>>>p.map(t.plus, x, y)
[4, 6, 8, 10]

Get the code here: https://github.com/uqfoundation/pathos

pathos also has an asynchronous map (amap), as well as imap.

Solution 3:

I'm not sure if this is what you are looking for but my use was slightly different. I wanted to use a method from a class within the same class running on multiple threads.

This is how I implemented it:

from multiprocessing import Pool

class Product(object):

        def __init__(self):
                self.logger = "test"

        def f(self, x):
                print(self.logger)
                return x*x

        def multi(self):
                p = Pool(5)
                print(p.starmap(Product.f, [(Product(), 1), (Product(), 2), (Product(), 3)]))


if __name__ == '__main__':
        obj = Product()
        obj.multi()

Post a Comment for "Can't Pickle Static Method - Multiprocessing - Python"