Np.where On Multiple Variables
I have a data frame with: customer_id [1,2,3,4,5,6,7,8,9,10] feature1 [0,0,1,1,0,0,1,1,0,0] feature2 [1,0,1,0,1,0,1,0,1,0] feature3 [0,0,1,0,0,0,1,0,0,0] Using this I want to crea
Solution 1:
I think you need numpy.select
- it select first True
values and all another are not important:
m1 = df['feature1']==1
m2 = df['feature2']==1
m3 = df['feature3']==1
df['new_var'] = np.select([m1, m2, m3], ['1', '2', '3'], default='4')
Sample:
customer_id = [1,2,3,4,5,6,7,8,9,10]
feature1 = [0,0,1,1,0,0,1,1,0,0]
feature2 = [1,0,1,0,1,0,1,0,1,0]
feature3 = [0,0,1,0,0,0,1,0,0,0]
df = pd.DataFrame({'customer_id':customer_id,
'feature1':feature1,
'feature2':feature2,
'feature3':feature3})
m1 = df['feature1']==1
m2 = df['feature2']==1
m3 = df['feature3']==1
df['new_var'] = np.select([m1, m2, m3], ['1', '2', '3'], default='4')
print (df)
customer_id feature1 feature2 feature3 new_var
0 1 0 1 0 2
1 2 0 0 0 4
2 3 1 1 1 1
3 4 1 0 0 1
4 5 0 1 0 2
5 6 0 0 0 4
6 7 1 1 1 1
7 8 1 0 0 1
8 9 0 1 0 2
9 10 0 0 0 4
If in features
only 1
and 0
is possible convert 0
to False
and 1
to True
:
m1 = df['feature1'].astype(bool)
m2 = df['feature2'].astype(bool)
m3 = df['feature3'].astype(bool)
df['new_var'] = np.select([m1, m2, m3], ['1', '2', '3'], default='4')
print (df)
customer_id feature1 feature2 feature3 new_var
0 1 0 1 0 2
1 2 0 0 0 4
2 3 1 1 1 1
3 4 1 0 0 1
4 5 0 1 0 2
5 6 0 0 0 4
6 7 1 1 1 1
7 8 1 0 0 1
8 9 0 1 0 2
9 10 0 0 0 4
Solution 2:
Try:
df['new_var']=np.where(df['feature3']==1, '3', '4')
df['new_var']=np.where(df['feature2']==1,'2', df['new_var'])
df['new_var']=np.where(df['feature1']==1, '1', df['new_var'])
Post a Comment for "Np.where On Multiple Variables"